4 Statements with Predicates and Quantifiers

26. Which of the following statements are true, assuming the domain of discourse is the set of real numbers?

- (i) $(\forall x)(\exists y)(x+y=0).$
- (ii) $(\exists x)(\forall y)(x+y=0).$
- (iii) $(\exists x)(\exists y)(x^2 + y^2 = -1).$
- (iv) $(\forall x)[x > 0 \Rightarrow (\exists y)(y < 0 \land xy > 0)].$
- **27.** (i) Express the compound statement $A \Leftrightarrow B$ using only the basic connectives \neg and \land .
- (ii) Recall that $(\exists !x)(x \in \mathbb{R} \land \varphi(x))$ is read as "There exists exactly one x in \mathbb{R} such that $\varphi(x)$ holds". Rewrite the following statement

$$(\exists!a)(a \in \mathbb{R} \land a > 3 \land a \le 4)$$

without using the shorthand ' \exists !'—that is, instead of using the quantifier \exists !, use the quantifiers \exists and \forall . Determine the truth value of the given statement.

		p	q	r	D
		1	1	1	0
28.	(a) Given the table on the right, find D .	1	1	0	0
	(")	1	0	1	0
(b)	The law of trichotomy states: "For every pair of real numbers a, b , exactly one	1	0	0	1
	of the following is true: $a = b$, $a < b$, or $a > b$ ". Write the law of trichotomy	0	1	1	0
	using quantifiers and connectives $(\forall, \exists, \land, \lor, \neg, \Rightarrow)$.	0	1	0	1
		0	0	1	1
		0	0	0	0

29. The set A is defined as follows:

 $A = \{n \in \mathbb{N} \mid n \text{ is an odd number } \land (\exists k) (k \in \mathbb{N} \land n = k(k+1)) \}.$

Show that A is an empty set.

30. Negate the following statement with quantifiers:

$$(\forall a)(\forall b)((a^2 + b^2 = 0) \Rightarrow (a = 0) \lor (b = 0))$$

Determine whether the negation is a true statement.

31. Express the following statement with quantifiers and prove it: There does not exist an odd number that can be expressed in the form 4j + 1 and 4k - 1 for integers j and k.

All above math problems are taken from the following website: https://osebje.famnit.upr.si/~penjic/teaching.html.

THE READER CAN FIND ALL SOLUTIONS TO THE GIVEN PROBLEMS ON THE SAME PAGE.